Module trustML.metrics.avgrobustnessbound
Expand source code
from trustML.metrics.metric import Metric
from art.metrics import RobustnessVerificationTreeModelsCliqueMethod
from art.estimators.classification import SklearnClassifier
import pandas as pd
class AverageBoundSKLTree(Metric):
"""Average robustness bound of a decision-tree sklearn-based model on the provided dataset
(data_x, data_y) using the ART package.
This metric is typically used to verify the robustness of the classifier on the provided dataset.
Args:
Metric (Class): Metric abstract class
"""
def __init__(self):
super().__init__()
def assess(self, trained_model, data_x, data_y):
print("Computing average robustness bound metric...")
rf_skmodel = SklearnClassifier(model=trained_model)
rt = RobustnessVerificationTreeModelsCliqueMethod(classifier=rf_skmodel)
average_bound, verified_error = rt.verify(x=data_x.values, y=pd.get_dummies(data_y).values, eps_init=0.001,
nb_search_steps=1, max_clique=2, max_level=1)
self.score = average_bound
Classes
class AverageBoundSKLTree
-
Average robustness bound of a decision-tree sklearn-based model on the provided dataset (data_x, data_y) using the ART package.
This metric is typically used to verify the robustness of the classifier on the provided dataset.
Args
Metric
:Class
- Metric abstract class
Expand source code
class AverageBoundSKLTree(Metric): """Average robustness bound of a decision-tree sklearn-based model on the provided dataset (data_x, data_y) using the ART package. This metric is typically used to verify the robustness of the classifier on the provided dataset. Args: Metric (Class): Metric abstract class """ def __init__(self): super().__init__() def assess(self, trained_model, data_x, data_y): print("Computing average robustness bound metric...") rf_skmodel = SklearnClassifier(model=trained_model) rt = RobustnessVerificationTreeModelsCliqueMethod(classifier=rf_skmodel) average_bound, verified_error = rt.verify(x=data_x.values, y=pd.get_dummies(data_y).values, eps_init=0.001, nb_search_steps=1, max_clique=2, max_level=1) self.score = average_bound
Ancestors
Inherited members